Role of nitric oxide released from iNANC neurons in airway responsiveness in cats.

نویسندگان

  • H Aizawa
  • S Takata
  • H Inoue
  • K Matsumoto
  • H Koto
  • N Hara
چکیده

The precise role of inhibitory nonadrenergic noncholinergic (iNANC) neurons and nitric oxide in airway hyperresponsiveness remains uncertain. The role of NO in the regulation of airway responsiveness was studied in anaesthetized and mechanically ventilated cats. To assess airway responsiveness, the changes in total pulmonary resistance (RL) produced by delivering serotonin aerosol to the airways were measured before and after N(omega)-nitro-L-arginine methyl ester (L-NAME), or a ganglionic blocker, hexamethonium, which has been reported to block iNANC. Serotonin was chosen because it causes bronchoconstriction in part by neural reflex. To further clarify the mechanism(s) involved, the effect of inhaled capsaicin was also determined in animals with sustained bronchoconstriction induced by serotonin after treatment with atropine and propranolol. Inhibition of NO synthase by L-NAME or blockade of iNANC neurons by hexamethonium significantly increased airway responsiveness. However, addition of L-NAME did not further increase airway responsiveness in animals treated with hexamethonium. In the presence of atropine and propranolol, inhaled capsaicin caused a marked bronchodilation during serotonin-induced sustained bronchoconstriction. The bronchodilation induced by capsaicin was significantly suppressed by hexamethonium and by L-NAME. These results suggest that the nitric oxide released from inhibitory nonadrenergic noncholinergic neurons is important in modulating the airway responsiveness of cats in vivo.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

N-omega-nitro-L-arginine methyl ester increases airway responsiveness to serotonin but not to acetylcholine in cats in vivo.

BACKGROUND We previously reported that N(omega)-nitro-L-arginine methyl ester (L-NAME) enhances airway responsiveness to inhaled serotonin in cats treated with atropine and propranolol. OBJECTIVE To further elucidate the role of nitric oxide (NO) in airway responsiveness, we investigated whether L-NAME induces airway hyperresponsiveness to serotonin and acetylcholine (ACh) in animals with int...

متن کامل

Arginase attenuates inhibitory nonadrenergic noncholinergic nerve-induced nitric oxide generation and airway smooth muscle relaxation

BACKGROUND Recent evidence suggests that endogenous arginase activity potentiates airway responsiveness to methacholine by attenuation of agonist-induced nitric oxide (NO) production, presumably by competition with epithelial constitutive NO synthase for the common substrate, L-arginine. Using guinea pig tracheal open-ring preparations, we now investigated the involvement of arginase in the mod...

متن کامل

Effects of lipopolysaccharide-induced septic shock on rat isolated kidney, possible role of nitric oxide and protein kinase C pathways

Objective(s): Pathophysiology of sepsis-associated renal failure (one of the most common cause of death in intensive care units) had not been fully determined. The effect of nitric oxide and protein kinase C (PKC) pathways in isolated kidney of Lipopolysaccharide-treated (LPS) rats were investigated in this study. Materials and Methods: Vascular responsiveness to phenylephrine and acetylcholine...

متن کامل

The Effect of Nucleus Tractus Solitarius Nitric Oxidergic Neurons on Blood Pressure in Diabetic Rats

It has been shown that nitric oxide is synthesized in the central nervous system as well as in vascular endothelial cells. Recently, it was reported that nitric oxide was involved in central cardiovascular regulation, baroreflex modulation, and involved in a reciprocal release with excitatory amino acids in the nucleus tractus solitarii of rats. The purpose of the present study was to investiga...

متن کامل

Nitric oxide derived from sympathetic nerves regulates airway responsiveness to histamine in guinea pigs.

Nitric oxide (NO), which can be derived from the nervous system or the epithelium of the airway, may modulate airway responsiveness. We investigated how NO derived from the airway nervous system would affect the airway responsiveness to histamine and acetylcholine in mechanically ventilated guinea pigs. An NO synthase inhibitor NG-nitro-L-arginine methyl ester (L-NAME) (1 mmol/kg i.p.) signific...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The European respiratory journal

دوره 13 4  شماره 

صفحات  -

تاریخ انتشار 1999